113 research outputs found

    Evolving Multi-Resolution Pooling CNN for Monaural Singing Voice Separation

    Full text link
    Monaural Singing Voice Separation (MSVS) is a challenging task and has been studied for decades. Deep neural networks (DNNs) are the current state-of-the-art methods for MSVS. However, the existing DNNs are often designed manually, which is time-consuming and error-prone. In addition, the network architectures are usually pre-defined, and not adapted to the training data. To address these issues, we introduce a Neural Architecture Search (NAS) method to the structure design of DNNs for MSVS. Specifically, we propose a new multi-resolution Convolutional Neural Network (CNN) framework for MSVS namely Multi-Resolution Pooling CNN (MRP-CNN), which uses various-size pooling operators to extract multi-resolution features. Based on the NAS, we then develop an evolving framework namely Evolving MRP-CNN (E-MRP-CNN), by automatically searching the effective MRP-CNN structures using genetic algorithms, optimized in terms of a single-objective considering only separation performance, or multi-objective considering both the separation performance and the model complexity. The multi-objective E-MRP-CNN gives a set of Pareto-optimal solutions, each providing a trade-off between separation performance and model complexity. Quantitative and qualitative evaluations on the MIR-1K and DSD100 datasets are used to demonstrate the advantages of the proposed framework over several recent baselines

    P Systems based Computing Polynomials: Design and Formal Verification

    Get PDF
    Automatic design of P systems is an attractive research topic in the community of membrane computing. Differing from the previous work that used evolutionary algorithms to fulfill the task, this paper presents the design of a simple (deterministic transition) P system (without input membrane) of degree 1, capturing the value of the k- order (k 2) polynomial by using a reasoning method. Specifically, the values of polynomial p(n) corresponding to a natural number t is equal to the multiplicity of a distinguished object of the system (the output object) in the configuration at instant t. We also discuss the descriptive computational resources required by the designed k-order polynomial P system.Ministerio de Economía y Competitividad TIN2012-3743

    rac-7,7′,9,9′-Tetra­phenyl-9a,9a′-bi(7,8,9,9a-tetra­hydro-6aH-penta­leno[1,2,3-ij]naphthalen-8-one)

    Get PDF
    The racemic title compound, C54H38O2, consists of two C-linked penta­leno[1,2,3-ij]naphthalenone moieties, the crowded aryl ring substitution on the cyclo­pentane rings forcing the two segments to assume a conformation which has pseudo-twofold rotational symmetry, with a dihedral angle between the naphthalene substituent groups of 55.30 (8)°. In each segment, the two phenyl rings have different conformational orientations, with inter-ring dihedral angles of 34.7 (2) and 49.63 (16)°. Each cyclo­pentane ring has the same relative configuration in its four chiral centres and together with the fused naphthalene ring assumes an overall chair-like conformation

    Elastic Valley Spin Controlled Chiral Coupling in Topological Valley Phononic Crystals

    Full text link
    Distinct from the phononic valley pseudo-spin, the real physical spin of elastic waves adds a novel tool-kit capable of envisaging the valley-spin physics of topological valley phononic crystals from a local viewpoint. Here, we report the observation of local elastic valley spin as well as the hidden elastic spin-valley locking mechanism overlooked before. We demonstrate that the selective one-way routing of valley phonon states along the topological interface can be reversed by imposing the elastic spin meta-source at different interface locations with opposite valley-spin correspondence. We unveil the physical mechanism of selective directionality as the elastic spin controlled chiral coupling of valley phonon states, through both analytical theory and experimental measurement of the opposite local elastic spin density at different interface locations for different transport directions. The elastic spin of valley topological edge phonons can be extended to other topological states and offers new tool to explore topological metamaterials.Comment: 5 pages, 3 figures, of main text + supplementary 10 figures. To be published in Phys. Rev. Let

    A Marine Anthraquinone SZ-685C Overrides Adriamycin-Resistance in Breast Cancer Cells through Suppressing Akt Signaling

    Get PDF
    Breast cancer remains a major health problem worldwide. While chemotherapy represents an important therapeutic modality against breast cancer, limitations in the clinical use of chemotherapy remain formidable because of chemoresistance. The HER2/PI-3K/Akt pathway has been demonstrated to play a causal role in conferring a broad chemoresistance in breast cancer cells and thus justified to be a target for enhancing the effects of anti-breast cancer chemotherapies, such as adriamycin (ADR). Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance are urgently needed for the treatment of breast cancer. In this context, SZ-685C, an agent that has been previously shown, as such, to suppress Akt signaling, is expected to increase the efficacy of chemotherapy. Our current study investigated whether SZ-685C can override chemoresistance through inhibiting Akt signaling in human breast cancer cells. ADR-resistant cells derived from human breast cancer cell lines MCF-7, MCF-7/ADR and MCF-7/Akt, were used as models to test the effects of SZ-685C. We found that SZ-685C suppressed the Akt pathway and induced apoptosis in MCF-7/ADR and MCF-7/Akt cells that are resistant to ADR treatment, leading to antitumor effects both in vitro and in vivo. Our data suggest that use of SZ-685C might represent a potentially promising approach to the treatment of ADR-resistant breast cancer
    • …
    corecore